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ABSTRACT
Modeling data situations that incorporate multiple modes presents challenges for
both normal and skew-normal distributions. To overcome this challenge, we present
a new class of asymmetric normal distributions designed to accurately represent
both asymmetry and multimodality in datasets. Moreover, we explore the location-
scale extension of this novel model and provide insights into parameter estimation
using the maximum likelihood estimation method. To illustrate the practical utility
of the model, we analyze a real-world dataset. Additionally, we perform a concise
simulation study to showcase the effectiveness of maximum likelihood estimators in
parameter estimation.
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1. Introduction

The normal distribution serves as a fundamental cornerstone in various statistical
studies and holds a crucial position in probability theory, being indispensable for
data processing and analysis. Despite its widespread utility, real-world data sets of-
ten exhibit asymmetry, deviating from the typical symmetry assumed by the normal
distribution, which can complicate analysis. [2] introduced the “skew-normal distribu-
tion,”a mathematically tractable class of distributions that encompasses the normal
distribution as a particular case. This distribution family is renowned for its efficacy in
handling and understanding skewed data. [5] created a novel class of asymmetric nor-
mal distributions suitable for plurimodal datasets. They termed it the “extended skew
curved normal distribution”. The probability density function (p.d.f.) of the extended
skew curved normal distribution is expressed as follows:

Let ϕ(·) and Φ(·) represent the probability density function (p.d.f.) and cumula-
tive distribution function (c.d.f.) of a standard normal variate, respectively. A random
variable X is defined to adhere to the extended skew curved normal distribution (ES-
CND), denoted as ESCND(λ, β), where λ ∈ R and β > −1. The p.d.f f(x;λ, β) for
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this distribution is expressed in the following form. For x ∈ R,

f(x;λ, β) =
2

β + 2
ϕ (x)

[
1 + βΦ

(
λx√

1 + λ2x2

)]
. (1)

To enhance the flexibility in modeling plurimodal asymmetric distributions, this
paper introduces a generalized form of the asymmetric normal distribution presented
by [5]. We term this new distribution as the “gamma generalized asymmetric curved
normal distribution (GGACND).”

The paper is organized as follows: In section 2, we introduce the definition and key
properties of the GGACND. Section 3 presents the derivation of certain reliability mea-
sures, including the reliability function, failure rate, and mean residual life function,
along with conditions for unimodal and plurimodal situations. In section 4, we propose
a location-scale extension of the GGACND and outline its significant properties such as
the characteristic function and reliability measures. Additionally, section 5 discusses
the maximum likelihood estimation of the parameters of the extended GGACND,
while section 6 explores a real-life application of the distribution.Furthermore, section
7 delves into the discussion of the generalized likelihood ratio test procedure to il-
lustrate the significance of an additional parameter. In section 8, we conduct a brief
simulation study to examine the performance of maximum likelihood estimators.

2. Gamma generalized asymmetric curved normal distribution

Here we define a generalized form of asymmetric normal distribution.

Definition 2.1. A random variable X is considered to follow a gamma generalized
asymmetric curved normal distribution if its p.d.f is expressed in the following form,
where x ∈ R, and λ, β, γ ∈ R such that β + γ > 0.

g(x;λ, β, γ) =
ϕ(x)

γ + β
[γ + 2βΦ(θ(x))] (2)

Where θ(x) = λx√
1+λ2x2

, for convenience of notation.

We denote a distribution with the p.d.f (2) as GGACND(λ, β, γ).
Note that when

(1) γ = 2, GGACND(λ, β, γ) reduces to the extended skew curved normal distribu-
tion of [5].

(2) γ = 0, GGACND(λ, β, γ) reduces to the skew curved normal distribution of [1].
(3) β = 0, GGACND(λ, β, γ) reduces to the standard normal distribution .

For specific values of λ, β, and γ, the p.d.f given in (2) of GGACND(λ, β, γ) is
plotted as in Figure 1.

The following findings revealed some structural features of GGACND(λ, β, γ).

Proposition 2.1. If X follows GGACND(λ, β, γ), then Z1 = −X follows
GGACND(−λ, β, γ).
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Figure 1. Probability plots of GGACND(λ, β, γ) for fixed values of λ and various values of β and γ

Proof. The p.d.f g1(z) of Z1 is

g1(z) = g(−z;λ, β, γ)|dx
dz

|

=
ϕ(−z)
γ + β

[γ + 2βΦ(θ(−z))]

= g(z;−λ, β, γ),

Since ϕ(.) is the p. d. f of standard normal variate. Hence Z1 follows
GGACND(−λ, β, γ).

Proposition 2.2. If X follows GGACND(λ, β, γ), then Z2 = X2 follows a chi-square
distribution with one degree of freedom.

Proof. The p.d.f. g2(z) of Z2 = X2 is the following, for z > 0.

g2(z) = g(
√
z, λ, β, γ)|dx

dz
|+ g(−

√
z, λ, β, γ)|dx

dz
|

=
ϕ(−

√
z)

γ + β

[
γ + 2βΦ(θ(−

√
z))
] 1

2
√
z
+

ϕ(
√
z)

γ + β

[
γ + 2βΦ(θ(

√
z))
] 1

2
√
z

=
ϕ(
√
z)

2(γ + β)
√
z

[
2γ + 2β

{
Φ(θ(−

√
z))

+Φ(θ(
√
z))
}]

=

(
ϕ(
√
z)

2
√
z

)
1

(γ + β)
[2γ + 2β] (3)

=

(
ϕ(
√
z)√
z

)

Proposition 2.3. If X follows GGACND(λ, β, γ), then Z3 = |X| follows a standard
half-normal distribution.
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Proof. For x > 0, the p.d.f of g3(z) of Z3 is

g3(z) = g(z;λ, β, γ)|dx
dz

|+ g(−z;λ, β, γ)|dx
dz

|

=
ϕ(z)

γ + β
[γ + 2β[Φ(θ(−z))] + ϕ(−z)

γ + β
[γ + 2β[Φ(θ(z))]

=
ϕ(z)

γ + β
[2γ + 2β {Φ(θ(−z)) + Φ(θ(z))}]

=
ϕ(z)

γ + β
[2γ + 2β] . (4)

The c.d.f of GGACND(λ, β, γ) with p.d.f (2) is obtained as follows.
For x ∈ R,

G(x) =

∫ x

−∞
g(t;λ, β, γ)dt

=
γ

γ + β
Φ(x) +

2β

γ + β

[∫ t

−∞
ϕ(t)Φ(θ(t))dt

]
=

γ

γ + β
Φ(x) +

2β

γ + β

∫ x

−∞

∫ θ(t)

−∞
ϕ(t)ϕ(u)dudt

= Φ(x)− 2β

γ + β
ξ0(x, θ(t)),

where

ξ0(x, θ(t)) =

∫ ∞

x

∫ θ(t)

0
ϕ (t)ϕ (u) dudt, (5)

which can be computed using the software MATHEMATICA.
Next we derive the characteristic function of GGACND(λ, β, γ). To find the char-

acteristic function, we need the following lemma proposed by [4].

Lemma 2.2. For a standard normal random variable X with distribution function Φ
we have the following for all a, b ∈ R

E {Φ(aX + b)} = ϕ

{
b√

1 + a2

}
.

If X follows GGACND(λ, β, γ) with the p.d.f (2), then according to the definition
of the characteristic function, we have the following expression for any t ∈ R and
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i =
√
−1:

ψX(t) = E(eitX)

=
γ

γ + β

∫ ∞

−∞
eitxϕ(x)dx+

2β

γ + β

∫ ∞

−∞
eitxϕ(x)Φ(θ(x))dx

=
e

−t2

2

γ + β

{
γ + 2β

∫ ∞

−∞

1√
2π
e

−(x−it)2

2 Φ(θ(x))dx

}
.

(6)

On substituting x− it = u, in (6), we obtain

ψX(t) =
e

−t2

2

γ + β
[γ + 2βΦ(θ(u+ it))] ,

The propositions provide the expressions for both even and odd moments of
GGACND(λ, β, γ) as follows:

Proposition 2.4. If X follows GGACND(λ, β, γ) then for any k=1,2,...

E(X2k) =
γΓ(k + 1

2)2
k

√
π(γ + β)

+
2β

γ + β
Λ2k−1, (7)

where

Λ2k−1 =

∫ ∞

0
x2k−1ϕ(x)Φ (θ(x)) dx,

and can be readily evaluated using the software MATHEMATICA.

Proof. By the definition of raw moments,

E(X2k) =

∫ ∞

−∞
x2kg(x;λ, β, γ)dx. (8)

On substituting x2 = u in (8) to obtain,

E(X2k) =
γ

γ + β

∫ ∞

0
ukϕ(

√
u)

1√
u
du+

2β

γ + β

∫ ∞

0
ukϕ(

√
u)Φ

(
θ(x)(

√
u
) 1√

u
du

=
γ

γ + β

∫ ∞

0
uk−

1

2ϕ(
√
u)du+

2β

γ + β

∫ ∞

0
uk−

1

2ϕ(
√
u)Φ

(
θ(x)(

√
u)
)
du,

which leads to (7).

Proposition 2.5. If X follows GGACND(λ, β, γ) then for any k=0,1,2,...

E(X2k+1) =
γ(2k+

1

2 )

(γ + β)
√
2π

Γ(k + 1) +
2β

γ + β
Λ2k (9)

159



Asian Journal of Statistical Sciences C. Satheesh Kumar and G.V. Anila

where

Λ2k =

∫ ∞

0
x2kϕ(x)Φ (θ(x)) dx,

which can be readily evaluated using the software MATHEMATICA.

Proof. By the definition of raw moments

E(X2k+1) =

∫ ∞

−∞
x2k+1g(x;λ, β, γ)dx. (10)

On substituting x2 = u in (10) we get,

E(uk+
1

2 ) =
γ

γ + β

∫ ∞

0
uk+

1

2ϕ(
√
u)

1√
u
du+

2β

γ + β

∫ ∞

0
uk+

1

2ϕ(
√
u)Φ

(
θ(x)(

√
u
) 1√

u
du

=
γ

γ + β

∫ ∞

0
ukϕ(

√
u)du+

2β

γ + β

∫ ∞

0
ukϕ(

√
u)Φ(θ(x)(

√
u))du,

which implies (9).

3. Reliability measures and Mode

Here we explore certain properties of GGACND(λ, β, γ) with the probability density
function (2), which are useful in reliability studies.

Let X follow GGACND(λ, β, γ) with the probability density function (2). From
the definition of the reliability function R(t), failure rate r(t), and mean residual life
function µ(t) of X, we derive the following results.

Proposition 3.1. The reliability function R(t) of X is defined as follows, where

ξ0(t, θ(x)) =
∫∞
t

∫ θ(x)
0 ϕ (t)ϕ (u) dudt is as defined in (5).

R (t) = [1− Φ(t)] +
2β

γ + β
ξ0(t, θ(x)).

Proposition 3.2. The failure rate r(t) of X is determined by the expression:

r (t) =
ϕ(t) [γ + 2βΦ(θ(x)(t))]

(γ + β)(1− Φ(t)) + 2βξ0(t, θ(x))
.

The failure rate plots of GGACND(λ, β, γ) for different values of γ are plotted given
Figure 2.
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Figure 2. Failure rate plots of GGACND(λ, β, γ) for fixed values of λ, β and various values of γ.

From Figure 2, it is evident that for certain values of λ, β, and γ, the failure rate of
GGACND(λ, β, γ) exhibits increasing, decreasing, and reversed ’S’ shaped curves.

Proposition 3.3. The mean residual life function of GGACND(λ, β, γ) is

µ(t) =
1

(γ + β)R(t)
{ϕ(t) (γ + 2βΦ(θ(x)(t))) + 2βξ∗0(t, θ(x))} − t,

(11)

where ξ∗0(t, θ(x)) =
∫∞
t ϕ(x) d

dx(
∫ θ(x)
0 ϕ(u)du)dx

Proof. By definition, the mean residual life function (MRLF) of X is given by

µ(t) = E(X − t/X > t)

= E(X/X > t)− t,

where

E(X/X > t) =
γ

(γ + β)R(t)

∫ ∞

t
xϕ(x)dx+

2β

(γ + β)R(t)

∫ ∞

t
xϕ(x)Φ(θ(x))dx

=
1

(γ + β)R(t)
[γI1 + 2βI2], (12)

where

I1 =

∫ ∞

t
xϕ(x)dx

= ϕ(t) (13)

I2 =

∫ ∞

t
xϕ(x)Φ(θ(x))dx

= −
∫ ∞

t
ϕ

′
(x)Φ(θ(x))dx

= Φ(θ(t))ϕ(t) +

∫ ∞

t
ϕ(x)

d

dx

(∫ θ(x)

0
ϕ(u)du

)
dx

= Φ(θ(t))ϕ(t) + ξ∗0(t, θ(x)). (14)

By applying (13) and (14) in (12), we obtain (11).
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The following result established the criteria for GGACND(λ, β, γ) is log concave.

Proposition 3.4. Case 1: For x > 0, the p.d.f of GGACND(λ, β, γ) is log concave
if:

(i) λ < 0, provided for all β > 0 and γ > 0 and

(ii) λ > 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|

Case 2: For x < 0, the p.d.f of GGACND(λ, β, γ) is log concave if:

(i) λ > 0, provided for all β > 0 and γ > 0 and

(i) λ < 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|.

Proof. To establish that ln[g(x;λ, β, γ)] is a concave function of x, it is sufficient to
demonstrate that its second derivative is negative for all x. Then

d

dx
ln[g(x;λ, β, γ)] = −x+

2βϕ(θ(x))(θ
′
(x))

γ + 2βΦ(θ(x))

and

d2

dx2
ln[g(x;λ, β, γ)] = −1− Λ1 − Λ2 + Λ3

in which

Λ1 =
2β(θ

′
(x))2ϕ(θ(x))θ(x)

γ + 2βΦ(θ(x))
(15)

Λ2 =
4β2(ϕ(θ(x)))2(θ

′
(x))2

[γ + 2βΦ(θ(x))]2
(16)

and

Λ3 =
2β(θ

′′
(x))ϕ(θ(x))

γ + 2βΦ(θ(x))
(17)

where

θ(x) =
λx√

1 + λ2x2

θ
′
(x) =

λ√
1 + λ2x2

− λ3x2

(1 + λ2x2)
3

2

and

θ
′′
(x) =

3λ5x3

(1 + λ2x2)
5

2

− 3λ3x

(1 + λ2x2)32

Note that Λ1 > 0 for β > 0 and θ(x) > 0. And θ(x) > 0 for all values of λ > 0.
Consequently Λ2 > 0 for all values of λ, β, γ > 0. Also Λ3 < 0 for either β < 0
and θ(x)

′′
(x) > 0 or β > 0 and θ(x)

′′
(x) < 0. Hence (2) is log concave in these

situations.
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As a consequence of Result 3.4, we can derive the following outcomes regarding the
unimodality and multimodality of the GGACND(λ, β, γ).

Proposition 3.5. GGACND(λ, β, γ) density is strongly unimodal under the following
two cases.
Case 1: For x > 0,

(i) if λ < 0, provided for all β > 0 and γ > 0 and

(ii) if λ > 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ > 0, provided for all β > 0 and γ > 0 and

(i) if λ < 0, provided | 3λ5x3

(1+λ2x2)
5
2
| < | 3λ3x

(1+λ2x2)
3
2
|.

Remark 1. GGACND(λ, β, γ) density is multimodal under the following two cases.

Case 1: For x > 0,

(i) if λ < 0, provided for all β < 0 and γ > 0 and

(ii) if λ > 0, provided | 3λ5x3

(1+λ2x2)
5
2
| > | 3λ3x

(1+λ2x2)
3
2
|

Case 2: For x < 0,

(i) if λ > 0, provided for all β < 0 and γ > 0 and

(i) if λ < 0, provided | 3λ5x3

(1+λ2x2)
5
2
| > | 3λλ2x

(1+λ2x2)
3
2
|.

4. Location scale extension

In this section, we explore an extended form of GGACND(λ, β, γ) by introducing the
location parameter µ and scale parameter σ.

Definition 4.1. Let X ∼ GGACND(λ, β, γ) with the probability density function
given in (2). Then Y = µ+ σX is said to have an extended GGACND with µ, σ, λ, β,
and γ with the following probability density function:

g(y, µ, σ;λ, β, γ) =
1

σ(γ + β)
ϕ

(
y − µ

σ

)
[γ + 2βΦ (θ(y))] , (18)

where θ∗(y) = λ(y−µ)
σ2+λ2(y−µ)2 , in which y ∈ R, µ ∈ R, λ ∈ R, β ∈ R,

σ > 0, and γ ∈ R. A distribution with probability density function (18) is
denoted as EGGACND(µ, σ;λ, β, γ). Clearly, when β = 0 or when λ = 0,
EGGACND(µ, σ;λ, β, γ) reduces to N(µ, σ2). Now we have the following results. The
proof of these results is similar to the results given in GGACND(λ, β, γ) and hence
omitted.

Proposition 4.1. The c.d.f G(x) of EGGACND(µ, σ;λ, β, γ) with probability density
function (18) is as follows, for y ∈ R.

G∗(y) = Φ

(
y − µ

σ

)
− 2β

σ(γ + β)
ξ∗0(y, θ

∗(t)),
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where ξ∗0(y, λ) is as defined in (5).

Proposition 4.2. The characteristic function of EGGACND(µ, σ;λ, β, γ) is given by:

ψY (t) =
1

σ(γ + β)
eitµ−

t2σ2

2 {γ + 2βΦ (θ∗(y))} ,

where θ∗(y) = λ(z+σ2it)√
σ2+λ2(z+σ2it)2

.

Proposition 4.3. The reliability function R(t) of Y is defined as follows, where

ξ0(t, θ(t)) =
∫∞
t

∫ θ∗(y)
0 ϕ(y−µ

σ )ϕ(v)dvdy is as defined in (5).

R∗(t) =

[
1− Φ

(
t− µ

σ

)]
+

2β

γ + β
ξ0(t, θ

∗(x))

Proposition 4.4. The failure rate r∗(t) of Y is given by:

r∗(t) =
ϕ
( t−µ

σ

)
[γ + 2βΦ (θ∗(t))][

1− Φ( t−µ
σ )
]
(γ + β) + 2βξ∗0(t, λ)

.

5. Maximum likelihood estimation

The log-likelihood function, denoted as lnL, for a random sample of size n drawn from
a population that follows the EGGACND(µ, σ;λ, β, γ) distribution is provided as:

lnL = c− nln(γ + β)− nlnσ − 1

2

n∑
i=1

(yi − µ)2

σ2

+

n∑
i=1

ln (γ + 2βΦ(θ∗(y))) ,

(19)

where c = −n
2 ln (2π). Upon differentiation of (19) with respect to the parameters µ,

σ, λ, β, and γ, and subsequently setting the derivatives equal to zero, we derive the
following set of normal equations:

n∑
i=1

(yi − µ)

σ2
+

n∑
i=1

2βϕ(θ∗(y))

(
λ3(yi−µ)2

[σ2+λ2(yi−µ)2]
3
2
− λ√

σ2+λ2(yi−µ)2

)
γ + 2βΦ(θ∗(y))

= 0, (20)

n

σ
−

n∑
i=1

(yi − µ)2

σ3
+

n∑
i=1

2βλϕ(θ∗(y))

(
(yi−µ)σ

[σ2+λ2(yi−µ)2]
3
2

)
γ + 2βΦ(θ∗(y))

= 0, (21)

164



Asian Journal of Statistical Sciences C. Satheesh Kumar and G.V. Anila

2β

n∑
i=1

ϕ(θ∗(y))

(
(yi−µ)√

σ2+λ2(yi−µ)2
− λ2(yi−µ)3

(σ2+λ2(yi−µ)2)
3
2

)
γ + 2βΦ (θ∗(y))

= 0 (22)

n∑
i=1

2Φ(θ(x)∗(y))

γ + 2βΦ(θ∗(y))
− n

γ + β
= 0 (23)

and

n∑
i=1

1

γ + 2βΦ(θ∗(y))
− n

γ + β
= 0, (24)

On solving the equations (20) to (24), we get the maximum likelihood estimate of the
parameters of the EGGACND(µ, σ;λ, β, γ).

6. Applications

In this section, we explore a practical application of the EGGACND model using
real-life data sourced from [3]. The dataset pertains to the daily milk production in
kilograms for three milking times in cows.

We fitted the EGGACND(µ, σ;λ, β, γ) model to the dataset. To assess the model’s
suitability, we also applied the ESCND(µ, σ; λ, β) model proposed by [5] to the same
dataset. We computed the Kolmogorov-Smirnov Statistic (KSS) values, Akaike’s Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC), and Corrected Akaike’s
Information Criterion (AICc) for both models. The numerical results are summarized
in Table 1.

Table 1. Estimated values of the parameters for the model: EGSCND(µ, σ;λ, β) and EGGACND(µ, σ; λ, β, γ)

with respective values of KSS, AIC, BIC and AICc.

Data set Estimates of ESCND(µ, σ;λ, β) EGGACND(µ, σ;λ, β, γ)

the parameters
1 µ̂ 31.95 31.5

σ̂ 4.62 4.46

λ̂ 0.394 3.542

β̂ 2.27 0.3
γ̂ - 20
KSS 0.15315 0.0833026
P-value 0.480675 0.981084
AIC 173.539 170.963
BIC 170.204 167.627
AICc 176.267 173.69

Based on the results presented in Table 1, it is evident that the
EGGACND(µ, σ;λ, β, γ) model offers a more suitable fit to the dataset examined
in this study compared to the existing ESCND(µ, σ; λ, β) model. Consequently, the
model discussed in this paper exhibits greater flexibility in terms of modeling per-
spectives. Additionally, we have depicted the histogram of dataset 1 alongside the
corresponding fitted probability plots for ESCND and EGGACND in Figure 3. The
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figure illustrates that the EGGACND model provides a superior fit compared to the
ESCND model for the dataset.

EGGACND

EGSCND

15 20 25 30 35 40 45
x0.00

0.02

0.04

0.06

0.08

0.10

Density
Daily milk production in kilograms for three times milking cows

Figure 3. Histogram of Data set 1 and fitted distributions

.

7. Generalized likelihood ratio test (GLRT)

In this section, we outline a test procedure for evaluating the parameter γ of the
EGGACND model. To test the null hypothesis H0 : γ = 2 against the alternative
hypothesis H1 : γ ̸= 2 using the generalized likelihood ratio test (GLRT), the test
statistic is defined as:

−2lnλ(x) = 2[lnL(Θ̂;x)− lnL(Θ̂∗;x)],

where Θ̂ represents the unrestricted maximum likelihood estimator of Θ =
(µ, σ;λ, β, γ), and Θ̂∗ is the maximum likelihood estimator of Θ when γ = 2. The
test statistic provided is asymptotically distributed as χ2 with 1 degree of freedom.
For further elaboration, please refer to [6]. The results obtained using GLRT are sum-
marized in Table 2.

Table 2. Likelihood values and GLRT test Statistic

Data Set 1

lnL(Θ̂∗;x) -83.473

lnL(Θ̂;x) -79.863
GLRT Statistic 7.221

Since the critical value for the test with a significance level of 0.05 at one degree
of freedom is 3.84, we reject the null hypothesis for the dataset under consideration.
This rejection further reinforces the appropriateness of the EGGACND model for the
dataset.
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8. Simulation Study

To evaluate the performance of the maximum likelihood estimators for the parameters
of the EGGACND(µ, σ;λ, β, γ), we conducted a brief simulation study. We generated
observations using MATHEMATICA for the specified parameter sets: µ = 5, σ = 0.8,
λ = 0.7, β = −0.5, and γ = −10.

For comparison, we considered 500 bootstrap samples of sizes 30, 50, and 100 from
the EGGACND distribution. We calculated the likelihood estimates of the parameters,
average bias estimates, and average mean squared errors (MSEs) over 500 replications.
The results are summarized in Table 3.

Table 3. Estimate of the parameters and corresponding bias and MSEs of EGGACND based on simulated
data sets corresponding to parameter set µ = 5, σ = 0.8, λ = 0.7, β = −0.5, and γ = −10.

Simulated Sample size Parameter Set Estimate Bias MSE
Data Sets
(1) 30 µ̂ 5.6 0.6 0.36

σ̂ 0.85 0.05 0.0025

λ̂ 0.75 0.05 0.0025

β̂ -0.45 0.05 0.0025
γ̂ -9.5 0.5 0.25

50 µ̂ 5.5 0.5 0.25
σ̂ 0.82 0.02 4e-04

λ̂ 0.73 0.03 9e-04

β̂ -0.49 0.01 1e-04
γ̂ -9.7 0.3 0.09

100 µ̂ 5.1 0.1 0.01
σ̂ 0.8001 1e-04 1e-08

λ̂ 0.72 0.02 4e-04

β̂ -0.4902 0.0098 9.604e-05
γ̂ -10.098 -0.098 0.009604

From Table 3, it is evident that both the bias and MSE decrease as the sample size
increases. This observation underscores the flexibility of the model discussed in this
paper in terms of modeling.
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